Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state

نویسندگان

  • Sze-Chun Chan
  • Sheng-Kwang Hwang
  • Jia-Ming Liu
چکیده

Nonlinear dynamics of semiconductor lasers has found many interesting applications in microwave photonics technology. In particular, a semiconductor laser under optical injection of proper strength and optical frequency detuning can enter into the dynamical period-one (P1) state through Hopf bifurcation. The resulting optical output carries a broadly tunable high-speed microwave modulation without employing any expensive microwave electronics. It is therefore a desirable source for radio-over-fiber (RoF) applications. The P1 state can also be adjusted to have a nearly single sideband (SSB) optical spectrum. It is an advantageous property for long distance fiber transmission because it minimizes the microwave power penalty that is induced by chromatic dispersion. In this work, we investigate in detail the properties of the P1 state and the effect of fiber dispersion as a function of the injection conditions. Based on a wellestablished rate equation model, the results show that the generated microwave frequency can be several times higher than the intrinsic relaxation resonance frequency of the laser. With a large injection strength and an injection detuning frequency higher than that required for Hopf bifurcation, the generated microwave power is nearly constant and the optical spectrum is close to SSB. We simulate the effect of fiber chromatic dispersion and the result shows a maximum microwave power penalty of less than 2 dB. The characterization of the P1 state is useful in guiding the design of RoF systems based on optically injected semiconductor lasers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency Division Multiplexed Radio-over-Fiber Transmission using an Optically Injected Laser Diode

Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is...

متن کامل

Afrl-ry-wp-tp-2013-0022 Generation and Modulation of a Millimeter- Wave Subcarrier on an Optical Frequency Generated via Optical Injection (postprint)

A highly tunable millimeter-wave subcarrier signal is generated by optically injecting a Fabry–Perot semiconductor laser. The optically injected light, which enables microwave subcarrier frequencies well beyond the injected laser’s free-running relaxationoscillation frequency, is then on–off keyed by direct-current (dc) modulation of the injected slave laser. Adjustment of the subcarrier freque...

متن کامل

Double-locked semiconductor laser for radio-over-fiber uplink transmission.

The nonlinear dynamics of an optically injected semiconductor laser are explored for radio-over-fiber uplink transmission. Under optical injection locking, the laser at the base station is operated in the period-one oscillation state, where its intensity oscillates at a tunable microwave frequency. When the oscillation is tuned to the subcarrier frequency, it is further locked by the uplink mic...

متن کامل

Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser.

Optically injected semiconductor laser under periodone oscillation is investigated as a source for photonic microwave transmission over fiber. The period-one nonlinear dynamics of an optically injected laser is studied for the purpose of minimizing the microwave power penalty induced by chromatic dispersion. Over a large range of injection strengths and frequency detunings, we first obtain the ...

متن کامل

Broadband optical chaos for stimulated Brillouin scattering suppression in power over fiber

Broadband chaos generated in an optically injected semiconductor laser is applied for power-over-fiber transmission. By varying the injection power, period-one oscillation, period-two oscillation, and chaotic oscillation are observed in the injected slave laser, indicating a period-doubling route to chaos. Compared to the free-running output of the laser, its chaotic output has a drastically in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007